Merge branch 'master' of github.com:notedsource/Perplexica into hristo/deploy-on-gcp-gke

This commit is contained in:
Hristo 2024-05-21 15:41:23 -04:00
commit 4c7942d2e8
28 changed files with 1035 additions and 41 deletions

View file

@ -0,0 +1,55 @@
import { RunnableSequence, RunnableMap } from '@langchain/core/runnables';
import ListLineOutputParser from '../lib/outputParsers/listLineOutputParser';
import { PromptTemplate } from '@langchain/core/prompts';
import formatChatHistoryAsString from '../utils/formatHistory';
import { BaseMessage } from '@langchain/core/messages';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { ChatOpenAI } from '@langchain/openai';
const suggestionGeneratorPrompt = `
You are an AI suggestion generator for an AI powered search engine. You will be given a conversation below. You need to generate 4-5 suggestions based on the conversation. The suggestion should be relevant to the conversation that can be used by the user to ask the chat model for more information.
You need to make sure the suggestions are relevant to the conversation and are helpful to the user. Keep a note that the user might use these suggestions to ask a chat model for more information.
Make sure the suggestions are medium in length and are informative and relevant to the conversation.
Provide these suggestions separated by newlines between the XML tags <suggestions> and </suggestions>. For example:
<suggestions>
Tell me more about SpaceX and their recent projects
What is the latest news on SpaceX?
Who is the CEO of SpaceX?
</suggestions>
Conversation:
{chat_history}
`;
type SuggestionGeneratorInput = {
chat_history: BaseMessage[];
};
const outputParser = new ListLineOutputParser({
key: 'suggestions',
});
const createSuggestionGeneratorChain = (llm: BaseChatModel) => {
return RunnableSequence.from([
RunnableMap.from({
chat_history: (input: SuggestionGeneratorInput) =>
formatChatHistoryAsString(input.chat_history),
}),
PromptTemplate.fromTemplate(suggestionGeneratorPrompt),
llm,
outputParser,
]);
};
const generateSuggestions = (
input: SuggestionGeneratorInput,
llm: BaseChatModel,
) => {
(llm as ChatOpenAI).temperature = 0;
const suggestionGeneratorChain = createSuggestionGeneratorChain(llm);
return suggestionGeneratorChain.invoke(input);
};
export default generateSuggestions;

View file

@ -0,0 +1,82 @@
import { Embeddings, type EmbeddingsParams } from '@langchain/core/embeddings';
import { chunkArray } from '@langchain/core/utils/chunk_array';
export interface HuggingFaceTransformersEmbeddingsParams
extends EmbeddingsParams {
modelName: string;
model: string;
timeout?: number;
batchSize?: number;
stripNewLines?: boolean;
}
export class HuggingFaceTransformersEmbeddings
extends Embeddings
implements HuggingFaceTransformersEmbeddingsParams
{
modelName = 'Xenova/all-MiniLM-L6-v2';
model = 'Xenova/all-MiniLM-L6-v2';
batchSize = 512;
stripNewLines = true;
timeout?: number;
private pipelinePromise: Promise<any>;
constructor(fields?: Partial<HuggingFaceTransformersEmbeddingsParams>) {
super(fields ?? {});
this.modelName = fields?.model ?? fields?.modelName ?? this.model;
this.model = this.modelName;
this.stripNewLines = fields?.stripNewLines ?? this.stripNewLines;
this.timeout = fields?.timeout;
}
async embedDocuments(texts: string[]): Promise<number[][]> {
const batches = chunkArray(
this.stripNewLines ? texts.map((t) => t.replace(/\n/g, ' ')) : texts,
this.batchSize,
);
const batchRequests = batches.map((batch) => this.runEmbedding(batch));
const batchResponses = await Promise.all(batchRequests);
const embeddings: number[][] = [];
for (let i = 0; i < batchResponses.length; i += 1) {
const batchResponse = batchResponses[i];
for (let j = 0; j < batchResponse.length; j += 1) {
embeddings.push(batchResponse[j]);
}
}
return embeddings;
}
async embedQuery(text: string): Promise<number[]> {
const data = await this.runEmbedding([
this.stripNewLines ? text.replace(/\n/g, ' ') : text,
]);
return data[0];
}
private async runEmbedding(texts: string[]) {
const { pipeline } = await import('@xenova/transformers');
const pipe = await (this.pipelinePromise ??= pipeline(
'feature-extraction',
this.model,
));
return this.caller.call(async () => {
const output = await pipe(texts, { pooling: 'mean', normalize: true });
return output.tolist();
});
}
}

View file

@ -0,0 +1,43 @@
import { BaseOutputParser } from '@langchain/core/output_parsers';
interface LineListOutputParserArgs {
key?: string;
}
class LineListOutputParser extends BaseOutputParser<string[]> {
private key = 'questions';
constructor(args?: LineListOutputParserArgs) {
super();
this.key = args.key ?? this.key;
}
static lc_name() {
return 'LineListOutputParser';
}
lc_namespace = ['langchain', 'output_parsers', 'line_list_output_parser'];
async parse(text: string): Promise<string[]> {
const regex = /^(\s*(-|\*|\d+\.\s|\d+\)\s|\u2022)\s*)+/;
const startKeyIndex = text.indexOf(`<${this.key}>`);
const endKeyIndex = text.indexOf(`</${this.key}>`);
const questionsStartIndex =
startKeyIndex === -1 ? 0 : startKeyIndex + `<${this.key}>`.length;
const questionsEndIndex = endKeyIndex === -1 ? text.length : endKeyIndex;
const lines = text
.slice(questionsStartIndex, questionsEndIndex)
.trim()
.split('\n')
.filter((line) => line.trim() !== '')
.map((line) => line.replace(regex, ''));
return lines;
}
getFormatInstructions(): string {
throw new Error('Not implemented.');
}
}
export default LineListOutputParser;

View file

@ -2,6 +2,7 @@ import { ChatOpenAI, OpenAIEmbeddings } from '@langchain/openai';
import { ChatOllama } from '@langchain/community/chat_models/ollama';
import { VertexAI } from "@langchain/google-vertexai";
import { OllamaEmbeddings } from '@langchain/community/embeddings/ollama';
import { HuggingFaceTransformersEmbeddings } from './huggingfaceTransformer';
import { hasGCPCredentials } from '../auth';
import {
getGroqApiKey,
@ -35,6 +36,11 @@ export const getAvailableChatModelProviders = async () => {
modelName: 'gpt-4-turbo',
temperature: 0.7,
}),
'GPT-4 omni': new ChatOpenAI({
openAIApiKey,
modelName: 'gpt-4o',
temperature: 0.7,
}),
};
} catch (err) {
logger.error(`Error loading OpenAI models: ${err}`);
@ -180,5 +186,21 @@ export const getAvailableEmbeddingModelProviders = async () => {
}
}
try {
models['local'] = {
'BGE Small': new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bge-small-en-v1.5',
}),
'GTE Small': new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/gte-small',
}),
'Bert Multilingual': new HuggingFaceTransformersEmbeddings({
modelName: 'Xenova/bert-base-multilingual-uncased',
}),
};
} catch (err) {
logger.error(`Error loading local embeddings: ${err}`);
}
return models;
};

View file

@ -3,6 +3,7 @@ import imagesRouter from './images';
import videosRouter from './videos';
import configRouter from './config';
import modelsRouter from './models';
import suggestionsRouter from './suggestions';
const router = express.Router();
@ -10,5 +11,6 @@ router.use('/images', imagesRouter);
router.use('/videos', videosRouter);
router.use('/config', configRouter);
router.use('/models', modelsRouter);
router.use('/suggestions', suggestionsRouter);
export default router;

46
src/routes/suggestions.ts Normal file
View file

@ -0,0 +1,46 @@
import express from 'express';
import generateSuggestions from '../agents/suggestionGeneratorAgent';
import { BaseChatModel } from '@langchain/core/language_models/chat_models';
import { getAvailableChatModelProviders } from '../lib/providers';
import { HumanMessage, AIMessage } from '@langchain/core/messages';
import logger from '../utils/logger';
const router = express.Router();
router.post('/', async (req, res) => {
try {
let { chat_history, chat_model, chat_model_provider } = req.body;
chat_history = chat_history.map((msg: any) => {
if (msg.role === 'user') {
return new HumanMessage(msg.content);
} else if (msg.role === 'assistant') {
return new AIMessage(msg.content);
}
});
const chatModels = await getAvailableChatModelProviders();
const provider = chat_model_provider || Object.keys(chatModels)[0];
const chatModel = chat_model || Object.keys(chatModels[provider])[0];
let llm: BaseChatModel | undefined;
if (chatModels[provider] && chatModels[provider][chatModel]) {
llm = chatModels[provider][chatModel] as BaseChatModel | undefined;
}
if (!llm) {
res.status(500).json({ message: 'Invalid LLM model selected' });
return;
}
const suggestions = await generateSuggestions({ chat_history }, llm);
res.status(200).json({ suggestions: suggestions });
} catch (err) {
res.status(500).json({ message: 'An error has occurred.' });
logger.error(`Error in generating suggestions: ${err.message}`);
}
});
export default router;