feat(agent): More agent tweaks
This commit is contained in:
parent
c3e845e0e2
commit
a8eaadc6ed
11 changed files with 169 additions and 26 deletions
|
|
@ -66,11 +66,41 @@ const handleEmitterEvents = async (
|
||||||
chatId: string,
|
chatId: string,
|
||||||
startTime: number,
|
startTime: number,
|
||||||
userMessageId: string,
|
userMessageId: string,
|
||||||
|
abortController: AbortController,
|
||||||
) => {
|
) => {
|
||||||
let recievedMessage = '';
|
let recievedMessage = '';
|
||||||
let sources: any[] = [];
|
let sources: any[] = [];
|
||||||
let searchQuery: string | undefined;
|
let searchQuery: string | undefined;
|
||||||
let searchUrl: string | undefined;
|
let searchUrl: string | undefined;
|
||||||
|
let isStreamActive = true;
|
||||||
|
|
||||||
|
// Keep-alive ping mechanism to prevent reverse proxy timeouts
|
||||||
|
const pingInterval = setInterval(() => {
|
||||||
|
if (isStreamActive) {
|
||||||
|
try {
|
||||||
|
writer.write(
|
||||||
|
encoder.encode(
|
||||||
|
JSON.stringify({
|
||||||
|
type: 'ping',
|
||||||
|
timestamp: Date.now(),
|
||||||
|
}) + '\n',
|
||||||
|
),
|
||||||
|
);
|
||||||
|
} catch (error) {
|
||||||
|
// If writing fails, the connection is likely closed
|
||||||
|
clearInterval(pingInterval);
|
||||||
|
isStreamActive = false;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
clearInterval(pingInterval);
|
||||||
|
}
|
||||||
|
}, 30000); // Send ping every 30 seconds
|
||||||
|
|
||||||
|
// Clean up ping interval if request is cancelled
|
||||||
|
abortController.signal.addEventListener('abort', () => {
|
||||||
|
isStreamActive = false;
|
||||||
|
clearInterval(pingInterval);
|
||||||
|
});
|
||||||
|
|
||||||
stream.on('data', (data) => {
|
stream.on('data', (data) => {
|
||||||
const parsedData = JSON.parse(data);
|
const parsedData = JSON.parse(data);
|
||||||
|
|
@ -149,6 +179,9 @@ const handleEmitterEvents = async (
|
||||||
});
|
});
|
||||||
|
|
||||||
stream.on('end', () => {
|
stream.on('end', () => {
|
||||||
|
isStreamActive = false;
|
||||||
|
clearInterval(pingInterval);
|
||||||
|
|
||||||
const endTime = Date.now();
|
const endTime = Date.now();
|
||||||
const duration = endTime - startTime;
|
const duration = endTime - startTime;
|
||||||
|
|
||||||
|
|
@ -190,6 +223,9 @@ const handleEmitterEvents = async (
|
||||||
.execute();
|
.execute();
|
||||||
});
|
});
|
||||||
stream.on('error', (data) => {
|
stream.on('error', (data) => {
|
||||||
|
isStreamActive = false;
|
||||||
|
clearInterval(pingInterval);
|
||||||
|
|
||||||
const parsedData = JSON.parse(data);
|
const parsedData = JSON.parse(data);
|
||||||
writer.write(
|
writer.write(
|
||||||
encoder.encode(
|
encoder.encode(
|
||||||
|
|
@ -413,6 +449,7 @@ export const POST = async (req: Request) => {
|
||||||
message.chatId,
|
message.chatId,
|
||||||
startTime,
|
startTime,
|
||||||
message.messageId,
|
message.messageId,
|
||||||
|
abortController,
|
||||||
);
|
);
|
||||||
|
|
||||||
handleHistorySave(message, humanMessageId, body.focusMode, body.files);
|
handleHistorySave(message, humanMessageId, body.focusMode, body.files);
|
||||||
|
|
|
||||||
|
|
@ -192,6 +192,7 @@ export const POST = async (req: Request) => {
|
||||||
const stream = new ReadableStream({
|
const stream = new ReadableStream({
|
||||||
start(controller) {
|
start(controller) {
|
||||||
let sources: any[] = [];
|
let sources: any[] = [];
|
||||||
|
let isStreamActive = true;
|
||||||
|
|
||||||
controller.enqueue(
|
controller.enqueue(
|
||||||
encoder.encode(
|
encoder.encode(
|
||||||
|
|
@ -202,7 +203,31 @@ export const POST = async (req: Request) => {
|
||||||
),
|
),
|
||||||
);
|
);
|
||||||
|
|
||||||
|
// Keep-alive ping mechanism to prevent reverse proxy timeouts
|
||||||
|
const pingInterval = setInterval(() => {
|
||||||
|
if (isStreamActive && !signal.aborted) {
|
||||||
|
try {
|
||||||
|
controller.enqueue(
|
||||||
|
encoder.encode(
|
||||||
|
JSON.stringify({
|
||||||
|
type: 'ping',
|
||||||
|
timestamp: Date.now(),
|
||||||
|
}) + '\n',
|
||||||
|
),
|
||||||
|
);
|
||||||
|
} catch (error) {
|
||||||
|
// If enqueueing fails, the connection is likely closed
|
||||||
|
clearInterval(pingInterval);
|
||||||
|
isStreamActive = false;
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
clearInterval(pingInterval);
|
||||||
|
}
|
||||||
|
}, 30000); // Send ping every 30 seconds
|
||||||
|
|
||||||
signal.addEventListener('abort', () => {
|
signal.addEventListener('abort', () => {
|
||||||
|
isStreamActive = false;
|
||||||
|
clearInterval(pingInterval);
|
||||||
emitter.removeAllListeners();
|
emitter.removeAllListeners();
|
||||||
|
|
||||||
try {
|
try {
|
||||||
|
|
@ -244,6 +269,9 @@ export const POST = async (req: Request) => {
|
||||||
emitter.on('end', () => {
|
emitter.on('end', () => {
|
||||||
if (signal.aborted) return;
|
if (signal.aborted) return;
|
||||||
|
|
||||||
|
isStreamActive = false;
|
||||||
|
clearInterval(pingInterval);
|
||||||
|
|
||||||
controller.enqueue(
|
controller.enqueue(
|
||||||
encoder.encode(
|
encoder.encode(
|
||||||
JSON.stringify({
|
JSON.stringify({
|
||||||
|
|
@ -257,6 +285,9 @@ export const POST = async (req: Request) => {
|
||||||
emitter.on('error', (error: any) => {
|
emitter.on('error', (error: any) => {
|
||||||
if (signal.aborted) return;
|
if (signal.aborted) return;
|
||||||
|
|
||||||
|
isStreamActive = false;
|
||||||
|
clearInterval(pingInterval);
|
||||||
|
|
||||||
controller.error(error);
|
controller.error(error);
|
||||||
});
|
});
|
||||||
},
|
},
|
||||||
|
|
|
||||||
|
|
@ -431,6 +431,14 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// Handle ping messages to keep connection alive (no action needed)
|
||||||
|
if (data.type === 'ping') {
|
||||||
|
console.debug('Ping received');
|
||||||
|
// Ping messages are used to keep the connection alive during long requests
|
||||||
|
// No action is required on the frontend
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
if (data.type === 'agent_action') {
|
if (data.type === 'agent_action') {
|
||||||
const agentActionEvent: AgentActionEvent = {
|
const agentActionEvent: AgentActionEvent = {
|
||||||
action: data.data.action,
|
action: data.data.action,
|
||||||
|
|
|
||||||
|
|
@ -101,10 +101,27 @@ export class AnalyzerAgent {
|
||||||
);
|
);
|
||||||
|
|
||||||
console.log('Next action response:', nextActionContent);
|
console.log('Next action response:', nextActionContent);
|
||||||
//}
|
|
||||||
|
|
||||||
if (!nextActionContent.startsWith('good_content')) {
|
if (
|
||||||
if (nextActionContent.startsWith('need_user_info')) {
|
!nextActionContent.startsWith('good_content') &&
|
||||||
|
!nextActionContent.startsWith('`good_content`')
|
||||||
|
) {
|
||||||
|
// If we don't have enough information, but we still have available tasks, proceed with the next task
|
||||||
|
|
||||||
|
if (state.tasks && state.tasks.length > 0) {
|
||||||
|
const hasMoreTasks = state.currentTaskIndex < state.tasks.length - 1;
|
||||||
|
|
||||||
|
if (hasMoreTasks) {
|
||||||
|
return new Command({
|
||||||
|
goto: 'task_manager',
|
||||||
|
});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (
|
||||||
|
nextActionContent.startsWith('need_user_info') ||
|
||||||
|
nextActionContent.startsWith('`need_user_info`')
|
||||||
|
) {
|
||||||
const moreUserInfoPrompt = await ChatPromptTemplate.fromTemplate(
|
const moreUserInfoPrompt = await ChatPromptTemplate.fromTemplate(
|
||||||
additionalUserInputPrompt,
|
additionalUserInputPrompt,
|
||||||
).format({
|
).format({
|
||||||
|
|
|
||||||
|
|
@ -52,6 +52,8 @@ Your task is to provide answers that are:
|
||||||
|
|
||||||
### Citation Requirements
|
### Citation Requirements
|
||||||
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`
|
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`
|
||||||
|
- If a statement is based on AI model inference or training data, it must be marked as \`[AI]\` and not cited from the context
|
||||||
|
- If a statement is based on previous messages in the conversation history, it must be marked as \`[Hist]\` and not cited from the context
|
||||||
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
|
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
|
||||||
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context
|
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context
|
||||||
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
|
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
|
||||||
|
|
@ -68,20 +70,29 @@ Your task is to provide answers that are:
|
||||||
${this.personaInstructions}
|
${this.personaInstructions}
|
||||||
</personaInstructions>
|
</personaInstructions>
|
||||||
|
|
||||||
User Query: ${state.originalQuery || state.query}
|
# Conversation History Context:
|
||||||
|
${
|
||||||
|
removeThinkingBlocksFromMessages(state.messages)
|
||||||
|
.map((msg) => `<${msg.getType()}>${msg.content}</${msg.getType()}>`)
|
||||||
|
.join('\n') || 'No previous conversation context'
|
||||||
|
}
|
||||||
|
|
||||||
Available Information:
|
# Available Information:
|
||||||
${state.relevantDocuments
|
${state.relevantDocuments
|
||||||
.map(
|
.map(
|
||||||
(doc, index) =>
|
(doc, index) =>
|
||||||
`<${index + 1}>\n
|
`<${index + 1}>\n
|
||||||
<title>${doc.metadata.title}</title>\n
|
<title>${doc.metadata.title}</title>\n
|
||||||
${doc.metadata?.url.toLowerCase().includes('file') ? '' : '\n<url>' + doc.metadata.url + '</url>\n'}
|
${doc.metadata?.url.toLowerCase().includes('file') ? '' : '\n<url>' + doc.metadata.url + '</url>\n'}
|
||||||
<content>\n${doc.pageContent}\n</content>\n
|
<content>\n${doc.pageContent}\n</content>\n
|
||||||
</${index + 1}>`,
|
</${index + 1}>`,
|
||||||
)
|
)
|
||||||
.join('\n')}
|
.join('\n')}
|
||||||
`;
|
|
||||||
|
# User Query: ${state.originalQuery || state.query}
|
||||||
|
|
||||||
|
Answer the user query:
|
||||||
|
`;
|
||||||
|
|
||||||
// Stream the response in real-time using LLM streaming capabilities
|
// Stream the response in real-time using LLM streaming capabilities
|
||||||
let fullResponse = '';
|
let fullResponse = '';
|
||||||
|
|
@ -99,7 +110,6 @@ ${doc.metadata?.url.toLowerCase().includes('file') ? '' : '\n<url>' + doc.metada
|
||||||
|
|
||||||
const stream = await this.llm.stream(
|
const stream = await this.llm.stream(
|
||||||
[
|
[
|
||||||
...removeThinkingBlocksFromMessages(state.messages),
|
|
||||||
new SystemMessage(synthesisPrompt),
|
new SystemMessage(synthesisPrompt),
|
||||||
new HumanMessage(state.originalQuery || state.query),
|
new HumanMessage(state.originalQuery || state.query),
|
||||||
],
|
],
|
||||||
|
|
|
||||||
|
|
@ -121,6 +121,8 @@ export class TaskManagerAgent {
|
||||||
|
|
||||||
// Parse the response to extract tasks
|
// Parse the response to extract tasks
|
||||||
const responseContent = taskBreakdownResult.content as string;
|
const responseContent = taskBreakdownResult.content as string;
|
||||||
|
|
||||||
|
console.log('Task breakdown response:', responseContent);
|
||||||
const taskLines = responseContent
|
const taskLines = responseContent
|
||||||
.split('\n')
|
.split('\n')
|
||||||
.filter((line) => line.trim().startsWith('TASK:'))
|
.filter((line) => line.trim().startsWith('TASK:'))
|
||||||
|
|
|
||||||
|
|
@ -17,23 +17,27 @@ import { AgentState } from './agentState';
|
||||||
import { setTemperature } from '../utils/modelUtils';
|
import { setTemperature } from '../utils/modelUtils';
|
||||||
import { Embeddings } from '@langchain/core/embeddings';
|
import { Embeddings } from '@langchain/core/embeddings';
|
||||||
import { removeThinkingBlocksFromMessages } from '../utils/contentUtils';
|
import { removeThinkingBlocksFromMessages } from '../utils/contentUtils';
|
||||||
|
import computeSimilarity from '../utils/computeSimilarity';
|
||||||
|
|
||||||
export class WebSearchAgent {
|
export class WebSearchAgent {
|
||||||
private llm: BaseChatModel;
|
private llm: BaseChatModel;
|
||||||
private emitter: EventEmitter;
|
private emitter: EventEmitter;
|
||||||
private systemInstructions: string;
|
private systemInstructions: string;
|
||||||
private signal: AbortSignal;
|
private signal: AbortSignal;
|
||||||
|
private embeddings: Embeddings;
|
||||||
|
|
||||||
constructor(
|
constructor(
|
||||||
llm: BaseChatModel,
|
llm: BaseChatModel,
|
||||||
emitter: EventEmitter,
|
emitter: EventEmitter,
|
||||||
systemInstructions: string,
|
systemInstructions: string,
|
||||||
signal: AbortSignal,
|
signal: AbortSignal,
|
||||||
|
embeddings: Embeddings,
|
||||||
) {
|
) {
|
||||||
this.llm = llm;
|
this.llm = llm;
|
||||||
this.emitter = emitter;
|
this.emitter = emitter;
|
||||||
this.systemInstructions = systemInstructions;
|
this.systemInstructions = systemInstructions;
|
||||||
this.signal = signal;
|
this.signal = signal;
|
||||||
|
this.embeddings = embeddings;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
|
@ -138,16 +142,33 @@ export class WebSearchAgent {
|
||||||
|
|
||||||
let bannedSummaryUrls = state.bannedSummaryUrls || [];
|
let bannedSummaryUrls = state.bannedSummaryUrls || [];
|
||||||
let bannedPreviewUrls = state.bannedPreviewUrls || [];
|
let bannedPreviewUrls = state.bannedPreviewUrls || [];
|
||||||
|
const queryVector = await this.embeddings.embedQuery(
|
||||||
|
state.originalQuery + ' ' + currentTask,
|
||||||
|
);
|
||||||
|
|
||||||
// Extract preview content from top 8 search results for analysis
|
// Filter out banned URLs first
|
||||||
const previewContents: PreviewContent[] = searchResults.results
|
const filteredResults = searchResults.results.filter(
|
||||||
.filter(
|
(result) =>
|
||||||
(result) =>
|
!bannedSummaryUrls.includes(result.url) &&
|
||||||
!bannedSummaryUrls.includes(result.url) &&
|
!bannedPreviewUrls.includes(result.url),
|
||||||
!bannedPreviewUrls.includes(result.url),
|
);
|
||||||
) // Filter out banned URLs first
|
|
||||||
.slice(0, 8) // Then take top 8 results
|
// Calculate similarities for all filtered results
|
||||||
.map((result) => ({
|
const resultsWithSimilarity = await Promise.all(
|
||||||
|
filteredResults.map(async (result) => {
|
||||||
|
const vector = await this.embeddings.embedQuery(
|
||||||
|
result.title + ' ' + result.content || '',
|
||||||
|
);
|
||||||
|
const similarity = computeSimilarity(vector, queryVector);
|
||||||
|
return { result, similarity };
|
||||||
|
}),
|
||||||
|
);
|
||||||
|
|
||||||
|
// Sort by relevance score and take top 8 results
|
||||||
|
const previewContents: PreviewContent[] = resultsWithSimilarity
|
||||||
|
.sort((a, b) => b.similarity - a.similarity)
|
||||||
|
.slice(0, 8)
|
||||||
|
.map(({ result }) => ({
|
||||||
title: result.title || 'Untitled',
|
title: result.title || 'Untitled',
|
||||||
snippet: result.content || '',
|
snippet: result.content || '',
|
||||||
url: result.url,
|
url: result.url,
|
||||||
|
|
@ -181,6 +202,7 @@ export class WebSearchAgent {
|
||||||
|
|
||||||
previewAnalysisResult = await analyzePreviewContent(
|
previewAnalysisResult = await analyzePreviewContent(
|
||||||
previewContents,
|
previewContents,
|
||||||
|
state.query,
|
||||||
currentTask,
|
currentTask,
|
||||||
removeThinkingBlocksFromMessages(state.messages),
|
removeThinkingBlocksFromMessages(state.messages),
|
||||||
this.llm,
|
this.llm,
|
||||||
|
|
@ -267,7 +289,9 @@ export class WebSearchAgent {
|
||||||
});
|
});
|
||||||
|
|
||||||
// Summarize the top 2 search results
|
// Summarize the top 2 search results
|
||||||
for (const result of searchResults.results.slice(0, 8)) {
|
for (const result of resultsWithSimilarity
|
||||||
|
.slice(0, 8)
|
||||||
|
.map((r) => r.result)) {
|
||||||
if (this.signal.aborted) {
|
if (this.signal.aborted) {
|
||||||
console.warn('Search operation aborted by signal');
|
console.warn('Search operation aborted by signal');
|
||||||
break; // Exit if the operation is aborted
|
break; // Exit if the operation is aborted
|
||||||
|
|
@ -381,7 +405,7 @@ export class WebSearchAgent {
|
||||||
console.log(responseMessage);
|
console.log(responseMessage);
|
||||||
|
|
||||||
return new Command({
|
return new Command({
|
||||||
goto: 'task_manager', // Route back to task manager to check if more tasks remain
|
goto: 'analyzer', // Route back to analyzer to process the results
|
||||||
update: {
|
update: {
|
||||||
messages: [new AIMessage(responseMessage)],
|
messages: [new AIMessage(responseMessage)],
|
||||||
relevantDocuments: documents,
|
relevantDocuments: documents,
|
||||||
|
|
|
||||||
|
|
@ -9,6 +9,7 @@ Your task is to analyze the provided context and determine if we have enough inf
|
||||||
# Response Options Decision Tree
|
# Response Options Decision Tree
|
||||||
|
|
||||||
## Step 1: Check if content is sufficient
|
## Step 1: Check if content is sufficient
|
||||||
|
- If your training data and the provided context contain enough information to answer the user's query → respond with \`good_content\`
|
||||||
- If the context fully answers the user's query with complete information → respond with \`good_content\`
|
- If the context fully answers the user's query with complete information → respond with \`good_content\`
|
||||||
- If the user is requesting to use the existing context to answer their query → respond with \`good_content\`
|
- If the user is requesting to use the existing context to answer their query → respond with \`good_content\`
|
||||||
- If the user is requesting to avoid web searches → respond with \`good_content\`
|
- If the user is requesting to avoid web searches → respond with \`good_content\`
|
||||||
|
|
|
||||||
|
|
@ -22,6 +22,8 @@ export const taskBreakdownPrompt = `You are a task breakdown specialist. Your jo
|
||||||
3. Maintain **specific details** like quantities, measurements, and qualifiers
|
3. Maintain **specific details** like quantities, measurements, and qualifiers
|
||||||
4. Use **clear, unambiguous language** in each sub-question
|
4. Use **clear, unambiguous language** in each sub-question
|
||||||
5. Keep the **same question type** (factual, analytical, etc.)
|
5. Keep the **same question type** (factual, analytical, etc.)
|
||||||
|
6. Avoid introducing **new concepts** or information not present in the original question
|
||||||
|
7. **Do not** repeat the same question multiple times; each sub-question should be unique and focused on a specific aspect of the original query
|
||||||
|
|
||||||
## Examples:
|
## Examples:
|
||||||
|
|
||||||
|
|
@ -58,6 +60,11 @@ TASK: What are the side effects of aspirin?
|
||||||
TASK: What are the side effects of ibuprofen?
|
TASK: What are the side effects of ibuprofen?
|
||||||
TASK: What are the side effects of acetaminophen?
|
TASK: What are the side effects of acetaminophen?
|
||||||
|
|
||||||
|
**Input**: "What day is New Year's Day this year?"
|
||||||
|
**Analysis**: Single focused question, no breakdown needed
|
||||||
|
**Output**:
|
||||||
|
TASK: What day is New Year's Day this year?
|
||||||
|
|
||||||
## Your Task:
|
## Your Task:
|
||||||
|
|
||||||
Analyze this user question: "{query}"
|
Analyze this user question: "{query}"
|
||||||
|
|
|
||||||
|
|
@ -61,6 +61,7 @@ export class AgentSearch {
|
||||||
emitter,
|
emitter,
|
||||||
systemInstructions,
|
systemInstructions,
|
||||||
signal,
|
signal,
|
||||||
|
embeddings,
|
||||||
);
|
);
|
||||||
this.analyzerAgent = new AnalyzerAgent(
|
this.analyzerAgent = new AnalyzerAgent(
|
||||||
llm,
|
llm,
|
||||||
|
|
|
||||||
|
|
@ -19,6 +19,7 @@ export type PreviewContent = {
|
||||||
export const analyzePreviewContent = async (
|
export const analyzePreviewContent = async (
|
||||||
previewContents: PreviewContent[],
|
previewContents: PreviewContent[],
|
||||||
query: string,
|
query: string,
|
||||||
|
taskQuery: string,
|
||||||
chatHistory: BaseMessage[],
|
chatHistory: BaseMessage[],
|
||||||
llm: BaseChatModel,
|
llm: BaseChatModel,
|
||||||
systemInstructions: string,
|
systemInstructions: string,
|
||||||
|
|
@ -60,14 +61,15 @@ Snippet: ${content.snippet}
|
||||||
console.log(`Invoking LLM for preview content analysis`);
|
console.log(`Invoking LLM for preview content analysis`);
|
||||||
|
|
||||||
const analysisResponse = await llm.invoke(
|
const analysisResponse = await llm.invoke(
|
||||||
`${systemPrompt}You are a preview content analyzer, tasked with determining if search result snippets contain sufficient information to answer a user's query.
|
`${systemPrompt}You are a preview content analyzer, tasked with determining if search result snippets contain sufficient information to answer the Task Query.
|
||||||
|
|
||||||
# Instructions
|
# Instructions
|
||||||
- Analyze the provided search result previews (titles + snippets), and chat history context to determine if they collectively contain enough information to provide a complete and accurate answer to the user's query
|
- Analyze the provided search result previews (titles + snippets), and chat history context to determine if they collectively contain enough information to provide a complete and accurate answer to the Task Query
|
||||||
- You must make a binary decision: either the preview content is sufficient OR it is not sufficient
|
- You must make a binary decision: either the preview content is sufficient OR it is not sufficient
|
||||||
- If the preview content can provide a complete answer to the query, respond with "sufficient"
|
- If the preview content can provide a complete answer to the Task Query, respond with "sufficient"
|
||||||
- If the preview content lacks important details, requires deeper analysis, or cannot fully answer the query, respond with "not_needed: [specific reason why full content analysis is required]"
|
- If the preview content lacks important details, requires deeper analysis, or cannot fully answer the Task Query, respond with "not_needed: [specific reason why full content analysis is required]"
|
||||||
- Be specific in your reasoning when the content is not sufficient
|
- Be specific in your reasoning when the content is not sufficient
|
||||||
|
- The original query is provided for additional context, only use it for clarification of overall expectations and intent. You do **not** need to answer the original query directly or completely
|
||||||
- Output your decision inside a \`decision\` XML tag
|
- Output your decision inside a \`decision\` XML tag
|
||||||
|
|
||||||
# Information Context:
|
# Information Context:
|
||||||
|
|
@ -79,6 +81,9 @@ ${formattedChatHistory ? formattedChatHistory : 'No previous conversation contex
|
||||||
# User Query:
|
# User Query:
|
||||||
${query}
|
${query}
|
||||||
|
|
||||||
|
# Task Query (what to answer):
|
||||||
|
${taskQuery}
|
||||||
|
|
||||||
# Search Result Previews to Analyze:
|
# Search Result Previews to Analyze:
|
||||||
${formattedPreviewContent}
|
${formattedPreviewContent}
|
||||||
`,
|
`,
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue