feat(agent): More agent tweaks
This commit is contained in:
parent
c3e845e0e2
commit
a8eaadc6ed
11 changed files with 169 additions and 26 deletions
|
|
@ -66,11 +66,41 @@ const handleEmitterEvents = async (
|
|||
chatId: string,
|
||||
startTime: number,
|
||||
userMessageId: string,
|
||||
abortController: AbortController,
|
||||
) => {
|
||||
let recievedMessage = '';
|
||||
let sources: any[] = [];
|
||||
let searchQuery: string | undefined;
|
||||
let searchUrl: string | undefined;
|
||||
let isStreamActive = true;
|
||||
|
||||
// Keep-alive ping mechanism to prevent reverse proxy timeouts
|
||||
const pingInterval = setInterval(() => {
|
||||
if (isStreamActive) {
|
||||
try {
|
||||
writer.write(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'ping',
|
||||
timestamp: Date.now(),
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
} catch (error) {
|
||||
// If writing fails, the connection is likely closed
|
||||
clearInterval(pingInterval);
|
||||
isStreamActive = false;
|
||||
}
|
||||
} else {
|
||||
clearInterval(pingInterval);
|
||||
}
|
||||
}, 30000); // Send ping every 30 seconds
|
||||
|
||||
// Clean up ping interval if request is cancelled
|
||||
abortController.signal.addEventListener('abort', () => {
|
||||
isStreamActive = false;
|
||||
clearInterval(pingInterval);
|
||||
});
|
||||
|
||||
stream.on('data', (data) => {
|
||||
const parsedData = JSON.parse(data);
|
||||
|
|
@ -149,6 +179,9 @@ const handleEmitterEvents = async (
|
|||
});
|
||||
|
||||
stream.on('end', () => {
|
||||
isStreamActive = false;
|
||||
clearInterval(pingInterval);
|
||||
|
||||
const endTime = Date.now();
|
||||
const duration = endTime - startTime;
|
||||
|
||||
|
|
@ -190,6 +223,9 @@ const handleEmitterEvents = async (
|
|||
.execute();
|
||||
});
|
||||
stream.on('error', (data) => {
|
||||
isStreamActive = false;
|
||||
clearInterval(pingInterval);
|
||||
|
||||
const parsedData = JSON.parse(data);
|
||||
writer.write(
|
||||
encoder.encode(
|
||||
|
|
@ -413,6 +449,7 @@ export const POST = async (req: Request) => {
|
|||
message.chatId,
|
||||
startTime,
|
||||
message.messageId,
|
||||
abortController,
|
||||
);
|
||||
|
||||
handleHistorySave(message, humanMessageId, body.focusMode, body.files);
|
||||
|
|
|
|||
|
|
@ -192,6 +192,7 @@ export const POST = async (req: Request) => {
|
|||
const stream = new ReadableStream({
|
||||
start(controller) {
|
||||
let sources: any[] = [];
|
||||
let isStreamActive = true;
|
||||
|
||||
controller.enqueue(
|
||||
encoder.encode(
|
||||
|
|
@ -202,7 +203,31 @@ export const POST = async (req: Request) => {
|
|||
),
|
||||
);
|
||||
|
||||
// Keep-alive ping mechanism to prevent reverse proxy timeouts
|
||||
const pingInterval = setInterval(() => {
|
||||
if (isStreamActive && !signal.aborted) {
|
||||
try {
|
||||
controller.enqueue(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
type: 'ping',
|
||||
timestamp: Date.now(),
|
||||
}) + '\n',
|
||||
),
|
||||
);
|
||||
} catch (error) {
|
||||
// If enqueueing fails, the connection is likely closed
|
||||
clearInterval(pingInterval);
|
||||
isStreamActive = false;
|
||||
}
|
||||
} else {
|
||||
clearInterval(pingInterval);
|
||||
}
|
||||
}, 30000); // Send ping every 30 seconds
|
||||
|
||||
signal.addEventListener('abort', () => {
|
||||
isStreamActive = false;
|
||||
clearInterval(pingInterval);
|
||||
emitter.removeAllListeners();
|
||||
|
||||
try {
|
||||
|
|
@ -244,6 +269,9 @@ export const POST = async (req: Request) => {
|
|||
emitter.on('end', () => {
|
||||
if (signal.aborted) return;
|
||||
|
||||
isStreamActive = false;
|
||||
clearInterval(pingInterval);
|
||||
|
||||
controller.enqueue(
|
||||
encoder.encode(
|
||||
JSON.stringify({
|
||||
|
|
@ -257,6 +285,9 @@ export const POST = async (req: Request) => {
|
|||
emitter.on('error', (error: any) => {
|
||||
if (signal.aborted) return;
|
||||
|
||||
isStreamActive = false;
|
||||
clearInterval(pingInterval);
|
||||
|
||||
controller.error(error);
|
||||
});
|
||||
},
|
||||
|
|
|
|||
|
|
@ -431,6 +431,14 @@ const ChatWindow = ({ id }: { id?: string }) => {
|
|||
return;
|
||||
}
|
||||
|
||||
// Handle ping messages to keep connection alive (no action needed)
|
||||
if (data.type === 'ping') {
|
||||
console.debug('Ping received');
|
||||
// Ping messages are used to keep the connection alive during long requests
|
||||
// No action is required on the frontend
|
||||
return;
|
||||
}
|
||||
|
||||
if (data.type === 'agent_action') {
|
||||
const agentActionEvent: AgentActionEvent = {
|
||||
action: data.data.action,
|
||||
|
|
|
|||
|
|
@ -101,10 +101,27 @@ export class AnalyzerAgent {
|
|||
);
|
||||
|
||||
console.log('Next action response:', nextActionContent);
|
||||
//}
|
||||
|
||||
if (!nextActionContent.startsWith('good_content')) {
|
||||
if (nextActionContent.startsWith('need_user_info')) {
|
||||
if (
|
||||
!nextActionContent.startsWith('good_content') &&
|
||||
!nextActionContent.startsWith('`good_content`')
|
||||
) {
|
||||
// If we don't have enough information, but we still have available tasks, proceed with the next task
|
||||
|
||||
if (state.tasks && state.tasks.length > 0) {
|
||||
const hasMoreTasks = state.currentTaskIndex < state.tasks.length - 1;
|
||||
|
||||
if (hasMoreTasks) {
|
||||
return new Command({
|
||||
goto: 'task_manager',
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
if (
|
||||
nextActionContent.startsWith('need_user_info') ||
|
||||
nextActionContent.startsWith('`need_user_info`')
|
||||
) {
|
||||
const moreUserInfoPrompt = await ChatPromptTemplate.fromTemplate(
|
||||
additionalUserInputPrompt,
|
||||
).format({
|
||||
|
|
|
|||
|
|
@ -52,6 +52,8 @@ Your task is to provide answers that are:
|
|||
|
||||
### Citation Requirements
|
||||
- Cite every single fact, statement, or sentence using [number] notation corresponding to the source from the provided \`context\`
|
||||
- If a statement is based on AI model inference or training data, it must be marked as \`[AI]\` and not cited from the context
|
||||
- If a statement is based on previous messages in the conversation history, it must be marked as \`[Hist]\` and not cited from the context
|
||||
- Integrate citations naturally at the end of sentences or clauses as appropriate. For example, "The Eiffel Tower is one of the most visited landmarks in the world[1]."
|
||||
- Ensure that **every sentence in your response includes at least one citation**, even when information is inferred or connected to general knowledge available in the provided context
|
||||
- Use multiple sources for a single detail if applicable, such as, "Paris is a cultural hub, attracting millions of visitors annually[1][2]."
|
||||
|
|
@ -68,9 +70,14 @@ Your task is to provide answers that are:
|
|||
${this.personaInstructions}
|
||||
</personaInstructions>
|
||||
|
||||
User Query: ${state.originalQuery || state.query}
|
||||
# Conversation History Context:
|
||||
${
|
||||
removeThinkingBlocksFromMessages(state.messages)
|
||||
.map((msg) => `<${msg.getType()}>${msg.content}</${msg.getType()}>`)
|
||||
.join('\n') || 'No previous conversation context'
|
||||
}
|
||||
|
||||
Available Information:
|
||||
# Available Information:
|
||||
${state.relevantDocuments
|
||||
.map(
|
||||
(doc, index) =>
|
||||
|
|
@ -81,6 +88,10 @@ ${doc.metadata?.url.toLowerCase().includes('file') ? '' : '\n<url>' + doc.metada
|
|||
</${index + 1}>`,
|
||||
)
|
||||
.join('\n')}
|
||||
|
||||
# User Query: ${state.originalQuery || state.query}
|
||||
|
||||
Answer the user query:
|
||||
`;
|
||||
|
||||
// Stream the response in real-time using LLM streaming capabilities
|
||||
|
|
@ -99,7 +110,6 @@ ${doc.metadata?.url.toLowerCase().includes('file') ? '' : '\n<url>' + doc.metada
|
|||
|
||||
const stream = await this.llm.stream(
|
||||
[
|
||||
...removeThinkingBlocksFromMessages(state.messages),
|
||||
new SystemMessage(synthesisPrompt),
|
||||
new HumanMessage(state.originalQuery || state.query),
|
||||
],
|
||||
|
|
|
|||
|
|
@ -121,6 +121,8 @@ export class TaskManagerAgent {
|
|||
|
||||
// Parse the response to extract tasks
|
||||
const responseContent = taskBreakdownResult.content as string;
|
||||
|
||||
console.log('Task breakdown response:', responseContent);
|
||||
const taskLines = responseContent
|
||||
.split('\n')
|
||||
.filter((line) => line.trim().startsWith('TASK:'))
|
||||
|
|
|
|||
|
|
@ -17,23 +17,27 @@ import { AgentState } from './agentState';
|
|||
import { setTemperature } from '../utils/modelUtils';
|
||||
import { Embeddings } from '@langchain/core/embeddings';
|
||||
import { removeThinkingBlocksFromMessages } from '../utils/contentUtils';
|
||||
import computeSimilarity from '../utils/computeSimilarity';
|
||||
|
||||
export class WebSearchAgent {
|
||||
private llm: BaseChatModel;
|
||||
private emitter: EventEmitter;
|
||||
private systemInstructions: string;
|
||||
private signal: AbortSignal;
|
||||
private embeddings: Embeddings;
|
||||
|
||||
constructor(
|
||||
llm: BaseChatModel,
|
||||
emitter: EventEmitter,
|
||||
systemInstructions: string,
|
||||
signal: AbortSignal,
|
||||
embeddings: Embeddings,
|
||||
) {
|
||||
this.llm = llm;
|
||||
this.emitter = emitter;
|
||||
this.systemInstructions = systemInstructions;
|
||||
this.signal = signal;
|
||||
this.embeddings = embeddings;
|
||||
}
|
||||
|
||||
/**
|
||||
|
|
@ -138,16 +142,33 @@ export class WebSearchAgent {
|
|||
|
||||
let bannedSummaryUrls = state.bannedSummaryUrls || [];
|
||||
let bannedPreviewUrls = state.bannedPreviewUrls || [];
|
||||
const queryVector = await this.embeddings.embedQuery(
|
||||
state.originalQuery + ' ' + currentTask,
|
||||
);
|
||||
|
||||
// Extract preview content from top 8 search results for analysis
|
||||
const previewContents: PreviewContent[] = searchResults.results
|
||||
.filter(
|
||||
// Filter out banned URLs first
|
||||
const filteredResults = searchResults.results.filter(
|
||||
(result) =>
|
||||
!bannedSummaryUrls.includes(result.url) &&
|
||||
!bannedPreviewUrls.includes(result.url),
|
||||
) // Filter out banned URLs first
|
||||
.slice(0, 8) // Then take top 8 results
|
||||
.map((result) => ({
|
||||
);
|
||||
|
||||
// Calculate similarities for all filtered results
|
||||
const resultsWithSimilarity = await Promise.all(
|
||||
filteredResults.map(async (result) => {
|
||||
const vector = await this.embeddings.embedQuery(
|
||||
result.title + ' ' + result.content || '',
|
||||
);
|
||||
const similarity = computeSimilarity(vector, queryVector);
|
||||
return { result, similarity };
|
||||
}),
|
||||
);
|
||||
|
||||
// Sort by relevance score and take top 8 results
|
||||
const previewContents: PreviewContent[] = resultsWithSimilarity
|
||||
.sort((a, b) => b.similarity - a.similarity)
|
||||
.slice(0, 8)
|
||||
.map(({ result }) => ({
|
||||
title: result.title || 'Untitled',
|
||||
snippet: result.content || '',
|
||||
url: result.url,
|
||||
|
|
@ -181,6 +202,7 @@ export class WebSearchAgent {
|
|||
|
||||
previewAnalysisResult = await analyzePreviewContent(
|
||||
previewContents,
|
||||
state.query,
|
||||
currentTask,
|
||||
removeThinkingBlocksFromMessages(state.messages),
|
||||
this.llm,
|
||||
|
|
@ -267,7 +289,9 @@ export class WebSearchAgent {
|
|||
});
|
||||
|
||||
// Summarize the top 2 search results
|
||||
for (const result of searchResults.results.slice(0, 8)) {
|
||||
for (const result of resultsWithSimilarity
|
||||
.slice(0, 8)
|
||||
.map((r) => r.result)) {
|
||||
if (this.signal.aborted) {
|
||||
console.warn('Search operation aborted by signal');
|
||||
break; // Exit if the operation is aborted
|
||||
|
|
@ -381,7 +405,7 @@ export class WebSearchAgent {
|
|||
console.log(responseMessage);
|
||||
|
||||
return new Command({
|
||||
goto: 'task_manager', // Route back to task manager to check if more tasks remain
|
||||
goto: 'analyzer', // Route back to analyzer to process the results
|
||||
update: {
|
||||
messages: [new AIMessage(responseMessage)],
|
||||
relevantDocuments: documents,
|
||||
|
|
|
|||
|
|
@ -9,6 +9,7 @@ Your task is to analyze the provided context and determine if we have enough inf
|
|||
# Response Options Decision Tree
|
||||
|
||||
## Step 1: Check if content is sufficient
|
||||
- If your training data and the provided context contain enough information to answer the user's query → respond with \`good_content\`
|
||||
- If the context fully answers the user's query with complete information → respond with \`good_content\`
|
||||
- If the user is requesting to use the existing context to answer their query → respond with \`good_content\`
|
||||
- If the user is requesting to avoid web searches → respond with \`good_content\`
|
||||
|
|
|
|||
|
|
@ -22,6 +22,8 @@ export const taskBreakdownPrompt = `You are a task breakdown specialist. Your jo
|
|||
3. Maintain **specific details** like quantities, measurements, and qualifiers
|
||||
4. Use **clear, unambiguous language** in each sub-question
|
||||
5. Keep the **same question type** (factual, analytical, etc.)
|
||||
6. Avoid introducing **new concepts** or information not present in the original question
|
||||
7. **Do not** repeat the same question multiple times; each sub-question should be unique and focused on a specific aspect of the original query
|
||||
|
||||
## Examples:
|
||||
|
||||
|
|
@ -58,6 +60,11 @@ TASK: What are the side effects of aspirin?
|
|||
TASK: What are the side effects of ibuprofen?
|
||||
TASK: What are the side effects of acetaminophen?
|
||||
|
||||
**Input**: "What day is New Year's Day this year?"
|
||||
**Analysis**: Single focused question, no breakdown needed
|
||||
**Output**:
|
||||
TASK: What day is New Year's Day this year?
|
||||
|
||||
## Your Task:
|
||||
|
||||
Analyze this user question: "{query}"
|
||||
|
|
|
|||
|
|
@ -61,6 +61,7 @@ export class AgentSearch {
|
|||
emitter,
|
||||
systemInstructions,
|
||||
signal,
|
||||
embeddings,
|
||||
);
|
||||
this.analyzerAgent = new AnalyzerAgent(
|
||||
llm,
|
||||
|
|
|
|||
|
|
@ -19,6 +19,7 @@ export type PreviewContent = {
|
|||
export const analyzePreviewContent = async (
|
||||
previewContents: PreviewContent[],
|
||||
query: string,
|
||||
taskQuery: string,
|
||||
chatHistory: BaseMessage[],
|
||||
llm: BaseChatModel,
|
||||
systemInstructions: string,
|
||||
|
|
@ -60,14 +61,15 @@ Snippet: ${content.snippet}
|
|||
console.log(`Invoking LLM for preview content analysis`);
|
||||
|
||||
const analysisResponse = await llm.invoke(
|
||||
`${systemPrompt}You are a preview content analyzer, tasked with determining if search result snippets contain sufficient information to answer a user's query.
|
||||
`${systemPrompt}You are a preview content analyzer, tasked with determining if search result snippets contain sufficient information to answer the Task Query.
|
||||
|
||||
# Instructions
|
||||
- Analyze the provided search result previews (titles + snippets), and chat history context to determine if they collectively contain enough information to provide a complete and accurate answer to the user's query
|
||||
- Analyze the provided search result previews (titles + snippets), and chat history context to determine if they collectively contain enough information to provide a complete and accurate answer to the Task Query
|
||||
- You must make a binary decision: either the preview content is sufficient OR it is not sufficient
|
||||
- If the preview content can provide a complete answer to the query, respond with "sufficient"
|
||||
- If the preview content lacks important details, requires deeper analysis, or cannot fully answer the query, respond with "not_needed: [specific reason why full content analysis is required]"
|
||||
- If the preview content can provide a complete answer to the Task Query, respond with "sufficient"
|
||||
- If the preview content lacks important details, requires deeper analysis, or cannot fully answer the Task Query, respond with "not_needed: [specific reason why full content analysis is required]"
|
||||
- Be specific in your reasoning when the content is not sufficient
|
||||
- The original query is provided for additional context, only use it for clarification of overall expectations and intent. You do **not** need to answer the original query directly or completely
|
||||
- Output your decision inside a \`decision\` XML tag
|
||||
|
||||
# Information Context:
|
||||
|
|
@ -79,6 +81,9 @@ ${formattedChatHistory ? formattedChatHistory : 'No previous conversation contex
|
|||
# User Query:
|
||||
${query}
|
||||
|
||||
# Task Query (what to answer):
|
||||
${taskQuery}
|
||||
|
||||
# Search Result Previews to Analyze:
|
||||
${formattedPreviewContent}
|
||||
`,
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue