fix(UI): Fix results showing in light mode

feat(AI): Enhance system prompt for more reliable and relevant results
fix(Reddit): Reddit focus should work again. Works around SearXNG limitations of broken reddit search by using `site:reddit.com`
This commit is contained in:
Willie Zutz 2025-05-10 15:07:41 -06:00
parent 1f74b815c8
commit e61aca6a5c
4 changed files with 114 additions and 56 deletions

View file

@ -377,7 +377,7 @@ const MessageTabs = ({
'prose prose-h1:mb-3 prose-h2:mb-2 prose-h2:mt-6 prose-h2:font-[800] prose-h3:mt-4 prose-h3:mb-1.5 prose-h3:font-[600] prose-invert prose-p:leading-relaxed prose-pre:p-0 font-[400]', 'prose prose-h1:mb-3 prose-h2:mb-2 prose-h2:mt-6 prose-h2:font-[800] prose-h3:mt-4 prose-h3:mb-1.5 prose-h3:font-[600] prose-invert prose-p:leading-relaxed prose-pre:p-0 font-[400]',
'prose-code:bg-transparent prose-code:p-0 prose-code:text-inherit prose-code:font-normal prose-code:before:content-none prose-code:after:content-none', 'prose-code:bg-transparent prose-code:p-0 prose-code:text-inherit prose-code:font-normal prose-code:before:content-none prose-code:after:content-none',
'prose-pre:bg-transparent prose-pre:border-0 prose-pre:m-0 prose-pre:p-0', 'prose-pre:bg-transparent prose-pre:border-0 prose-pre:m-0 prose-pre:p-0',
'max-w-none break-words px-4 text-white', 'max-w-none break-words px-4 text-black dark:text-white',
)} )}
options={markdownOverrides} options={markdownOverrides}
> >

View file

@ -1,80 +1,131 @@
export const webSearchRetrieverPrompt = ` export const webSearchRetrieverPrompt = `
You are an AI question rephraser. You will be given a conversation and a follow-up question, you will have to rephrase the follow up question so it is a standalone question and can be used by another LLM to search the web for information to answer it. You should condense the question to its essence and remove any unnecessary details. You should also make sure that the question is clear and easy to understand. You should not add any new information or change the meaning of the question. You should also make sure that the question is grammatically correct and free of spelling errors. # Instructions
If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response (This is because the LLM won't need to search the web for finding information on this topic). - You are an AI question rephraser
If the user asks some question from some URL or wants you to summarize a PDF or a webpage (via URL) you need to return the links inside the \`links\` XML block and the question inside the \`question\` XML block. If the user wants to you to summarize the webpage or the PDF you need to return \`summarize\` inside the \`question\` XML block in place of a question and the link to summarize in the \`links\` XML block. - You will be given a conversation and a user question
You must always return the rephrased question inside the \`question\` XML block, if there are no links in the follow-up question then don't insert a \`links\` XML block in your response. - Rephrase the question so it is appropriate for web search
If you are a thinking or reasoning AI, you should avoid using \`<question>\` and \`</question>\` tags in your thinking. Those tags should only be used in the final output. You should also avoid using \`<links>\` and \`</links>\` tags in your thinking. Those tags should only be used in the final output. - Only add additional information or change the meaning of the question if it is necessary for clarity or relevance to the conversation
- Condense the question to its essence and remove any unnecessary details
- Ensure the question is grammatically correct and free of spelling errors
- If it is a simple writing task or a greeting (unless the greeting contains a question after it) like Hi, Hello, How are you, etc. than a question then you need to return \`not_needed\` as the response in the <answer> XML block
- If the user includes URLs or a PDF in their question, return the URLs or PDF links inside the <links> XML block and the question inside the <answer> XML block
- If the user wants to you to summarize the webpage or the PDF, return summarize inside the <answer> XML block in place of a question and the URLs to summarize in the <links> XML block
- If you are a thinking or reasoning AI, do not use <answer> and </answer> or <links> and </links> tags in your thinking. Those tags should only be used in the final output
- If applicable, use the provided date to ensure the rephrased question is relevant to the current date and time
There are several examples attached for your reference inside the below \`examples\` XML block # Data
- The history is contained in the <conversation> tag after the <examples> below
- The user question is contained in the <question> tag after the <examples> below
- You must always return the rephrased question inside an <answer> XML block, if there are no links in the follow-up question then don't insert a <links> XML block in your response
- Current date & time in ISO format (UTC timezone) is: {date}
- Do not include any other text in your answer
There are several examples attached for your reference inside the below examples XML block
<examples> <examples>
1. Follow up question: What is the capital of France ## Example 1 input
Rephrased question:\` <conversation>
Who won the last F1 race?\nAyrton Senna won the Monaco Grand Prix. It was a tight race with lots of overtakes. Alain Prost was in the lead for most of the race until the last lap when Senna overtook them.
</conversation>
<question> <question>
Capital of france What were the highlights of the race?
</question> </question>
\`
2. Hi, how are you? ## Example 1 output
Rephrased question\` <answer>
F1 Monaco Grand Prix highlights
</answer>
## Example 2 input
<conversation>
</conversation>
<question> <question>
What is the capital of France
</question>
## Example 2 output
<answer>
Capital of France
</answer>
## Example 3 input
<conversation>
</conversation>
<question>
Hi, how are you?
</question>
## Example 3 output
<answer>
not_needed not_needed
</question> </answer>
\`
3. Follow up question: What is Docker? ## Example 4 input
Rephrased question: \` <conversation>
</conversation>
<question> <question>
What is Docker Can you tell me what is X from https://example.com
</question> </question>
\`
4. Follow up question: Can you tell me what is X from https://example.com ## Example 4 output
Rephrased question: \` <answer>
<question> Can you tell me what is X
Can you tell me what is X? </answer>
</question>
<links> <links>
https://example.com https://example.com
</links> </links>
\`
5. Follow up question: Summarize the content from https://example.com ## Example 5 input
Rephrased question: \` <conversation>
</conversation>
<question> <question>
Summarize the content from https://example.com
</question>
## Example 5 output
<answer>
summarize summarize
</question> </answer>
<links> <links>
https://example.com https://example.com
</links> </links>
\`
6. Follow-up question: Get the current F1 constructor standings and return the results in a table ## Example 6 input
Rephrased question: \` <conversation>
</conversation>
<question> <question>
Current F1 constructor standings Get the current F1 constructor standings and return the results in a table
</question> </question>
\`
7. Follow-up question: What are the top 10 restaurants in New York? Show the results in a table and include a short description of each restaurant. ## Example 6 output
Rephrased question: \` <answer>
{date} F1 constructor standings
</answer>
## Example 7 input
<conversation>
</conversation>
<question> <question>
Top 10 restaurants in New York What are the top 10 restaurants in New York? Show the results in a table and include a short description of each restaurant
</question> </question>
\`
## Example 7 output
<answer>
Top 10 restaurants in New York on {date}
</answer>
</examples> </examples>
Anything below is the part of the actual conversation and you need to use conversation and the follow-up question to rephrase the follow-up question as a standalone question based on the guidelines shared above. Everything below is the part of the actual conversation
<conversation> <conversation>
{chat_history} {chat_history}
</conversation> </conversation>
Follow up question: {query} <question>
Rephrased question: {query}
</question>
`; `;
export const webSearchResponsePrompt = ` export const webSearchResponsePrompt = `

View file

@ -13,8 +13,8 @@ export const searchHandlers: Record<string, MetaSearchAgent> = {
}), }),
academicSearch: new MetaSearchAgent({ academicSearch: new MetaSearchAgent({
activeEngines: ['arxiv', 'google scholar', 'pubmed'], activeEngines: ['arxiv', 'google scholar', 'pubmed'],
queryGeneratorPrompt: prompts.academicSearchRetrieverPrompt, queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
responsePrompt: prompts.academicSearchResponsePrompt, responsePrompt: prompts.webSearchResponsePrompt,
rerank: true, rerank: true,
rerankThreshold: 0, rerankThreshold: 0,
searchWeb: true, searchWeb: true,
@ -40,8 +40,8 @@ export const searchHandlers: Record<string, MetaSearchAgent> = {
}), }),
wolframAlphaSearch: new MetaSearchAgent({ wolframAlphaSearch: new MetaSearchAgent({
activeEngines: ['wolframalpha'], activeEngines: ['wolframalpha'],
queryGeneratorPrompt: prompts.wolframAlphaSearchRetrieverPrompt, queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
responsePrompt: prompts.wolframAlphaSearchResponsePrompt, responsePrompt: prompts.webSearchResponsePrompt,
rerank: false, rerank: false,
rerankThreshold: 0, rerankThreshold: 0,
searchWeb: true, searchWeb: true,
@ -49,20 +49,21 @@ export const searchHandlers: Record<string, MetaSearchAgent> = {
}), }),
youtubeSearch: new MetaSearchAgent({ youtubeSearch: new MetaSearchAgent({
activeEngines: ['youtube'], activeEngines: ['youtube'],
queryGeneratorPrompt: prompts.youtubeSearchRetrieverPrompt, queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
responsePrompt: prompts.youtubeSearchResponsePrompt, responsePrompt: prompts.webSearchResponsePrompt,
rerank: true, rerank: true,
rerankThreshold: 0.3, rerankThreshold: 0.3,
searchWeb: true, searchWeb: true,
summarizer: false, summarizer: false,
}), }),
redditSearch: new MetaSearchAgent({ redditSearch: new MetaSearchAgent({
activeEngines: ['reddit'], activeEngines: [],
queryGeneratorPrompt: prompts.redditSearchRetrieverPrompt, queryGeneratorPrompt: prompts.webSearchRetrieverPrompt,
responsePrompt: prompts.redditSearchResponsePrompt, responsePrompt: prompts.webSearchResponsePrompt,
rerank: true, rerank: true,
rerankThreshold: 0.3, rerankThreshold: 0.3,
searchWeb: true, searchWeb: true,
summarizer: false, summarizer: false,
additionalSearchCriteria: "site:reddit.com",
}), }),
}; };

View file

@ -45,6 +45,7 @@ interface Config {
queryGeneratorPrompt: string; queryGeneratorPrompt: string;
responsePrompt: string; responsePrompt: string;
activeEngines: string[]; activeEngines: string[];
additionalSearchCriteria?: string;
} }
type BasicChainInput = { type BasicChainInput = {
@ -70,19 +71,19 @@ class MetaSearchAgent implements MetaSearchAgentType {
llm, llm,
this.strParser, this.strParser,
RunnableLambda.from(async (input: string) => { RunnableLambda.from(async (input: string) => {
//console.log(`LLM response for initial web search:"${input}"`);
const linksOutputParser = new LineListOutputParser({ const linksOutputParser = new LineListOutputParser({
key: 'links', key: 'links',
}); });
const questionOutputParser = new LineOutputParser({ const questionOutputParser = new LineOutputParser({
key: 'question', key: 'answer',
}); });
const links = await linksOutputParser.parse(input); const links = await linksOutputParser.parse(input);
let question = this.config.summarizer let question = await questionOutputParser.parse(input);
? await questionOutputParser.parse(input)
: input; //console.log('question', question);
console.log('question', question);
if (question === 'not_needed') { if (question === 'not_needed') {
return { query: '', docs: [] }; return { query: '', docs: [] };
@ -206,7 +207,10 @@ class MetaSearchAgent implements MetaSearchAgentType {
return { query: question, docs: docs }; return { query: question, docs: docs };
} else { } else {
question = question.replace(/<think>.*?<\/think>/g, '');
if (this.config.additionalSearchCriteria) {
question = `${question} ${this.config.additionalSearchCriteria}`;
}
const searxngResult = await searchSearxng(question, { const searxngResult = await searchSearxng(question, {
language: 'en', language: 'en',
@ -245,6 +249,7 @@ class MetaSearchAgent implements MetaSearchAgentType {
optimizationMode: 'speed' | 'balanced' | 'quality', optimizationMode: 'speed' | 'balanced' | 'quality',
systemInstructions: string, systemInstructions: string,
) { ) {
return RunnableSequence.from([ return RunnableSequence.from([
RunnableMap.from({ RunnableMap.from({
systemInstructions: () => systemInstructions, systemInstructions: () => systemInstructions,
@ -262,10 +267,11 @@ class MetaSearchAgent implements MetaSearchAgentType {
if (this.config.searchWeb) { if (this.config.searchWeb) {
const searchRetrieverChain = const searchRetrieverChain =
await this.createSearchRetrieverChain(llm); await this.createSearchRetrieverChain(llm);
var date = new Date().toISOString();
const searchRetrieverResult = await searchRetrieverChain.invoke({ const searchRetrieverResult = await searchRetrieverChain.invoke({
chat_history: processedHistory, chat_history: processedHistory,
query, query,
date,
}); });
query = searchRetrieverResult.query; query = searchRetrieverResult.query;