Perplexica/.github/copilot-instructions.md

152 lines
5.2 KiB
Markdown

# Project Overview
Perplexica is an open-source AI-powered search engine that uses advanced machine learning to provide intelligent search results. It combines web search capabilities with LLM-based processing to understand and answer user questions, similar to Perplexity AI but fully open source.
## Architecture
The system works through these main steps:
- User submits a query
- The system determines if web search is needed
- If needed, it searches the web using SearXNG
- Results are ranked using embedding-based similarity search
- LLMs are used to generate a comprehensive response with cited sources
## Architecture Details
### Technology Stack
- **Frontend**: React, Next.js, Tailwind CSS
- **Backend**: Node.js
- **Database**: SQLite with Drizzle ORM
- **AI/ML**: LangChain + LangGraph for orchestration
- **Search**: SearXNG integration
- **Content Processing**: Mozilla Readability, Cheerio, Playwright
### Database (SQLite + Drizzle ORM)
- Schema: `src/lib/db/schema.ts`
- Tables: `messages`, `chats`, `systemPrompts`
- Configuration: `drizzle.config.ts`
- Local file: `data/db.sqlite`
### AI/ML Stack
- **LLM Providers**: OpenAI, Anthropic, Groq, Ollama, Gemini, DeepSeek, LM Studio
- **Embeddings**: Xenova Transformers, similarity search (cosine/dot product)
- **Agents**: `webSearchAgent`, `analyzerAgent`, `synthesizerAgent`, `taskManagerAgent`
### External Services
- **Search Engine**: SearXNG integration (`src/lib/searxng.ts`)
- **Configuration**: TOML-based config file
### Data Flow
1. User query → Task Manager Agent
2. Web Search Agent → SearXNG → Content extraction
3. Analyzer Agent → Content processing + embedding
4. Synthesizer Agent → LLM response generation
5. Response with cited sources
## Project Structure
- `/src/app`: Next.js app directory with page components and API routes
- `/src/app/api`: API endpoints for search and LLM interactions
- `/src/components`: Reusable UI components
- `/src/lib`: Backend functionality
- `lib/search`: Search functionality and meta search agent
- `lib/db`: Database schema and operations
- `lib/providers`: LLM and embedding model integrations
- `lib/prompts`: Prompt templates for LLMs
- `lib/chains`: LangChain chains for various operations
- `lib/agents`: LangGraph agents for advanced processing
- `lib/utils`: Utility functions and types including web content retrieval and processing
## Focus Modes
Perplexica supports multiple specialized search modes:
- All Mode: General web search
- Local Research Mode: Research and interact with local files with citations
- Chat Mode: Have a creative conversation
- Academic Search Mode: For academic research
- YouTube Search Mode: For video content
- Wolfram Alpha Search Mode: For calculations and data analysis
- Reddit Search Mode: For community discussions
## Core Commands
- **Development**: `npm run dev` (uses Turbopack for faster builds)
- **Build**: `npm run build` (includes automatic DB push)
- **Production**: `npm run start`
- **Linting**: `npm run lint` (Next.js ESLint)
- **Formatting**: `npm run format:write` (Prettier)
- **Database**: `npm run db:push` (Drizzle migrations)
## Configuration
The application uses a `config.toml` file (created from `sample.config.toml`) for configuration, including:
- API keys for various LLM providers
- Database settings
- Search engine configuration
- Similarity measure settings
## Common Tasks
When working on this codebase, you might need to:
- Add new API endpoints in `/src/app/api`
- Modify UI components in `/src/components`
- Extend search functionality in `/src/lib/search`
- Add new LLM providers in `/src/lib/providers`
- Update database schema in `/src/lib/db/schema.ts`
- Create new prompt templates in `/src/lib/prompts`
- Build new chains in `/src/lib/chains`
- Implement new LangGraph agents in `/src/lib/agents`
## AI Behavior Guidelines
- Focus on factual, technical responses without unnecessary pleasantries
- Avoid conciliatory language and apologies
- Ask for clarification when requirements are unclear
- Do not add dependencies unless explicitly requested
- Only make changes relevant to the specific task
- **Do not create test files or run the application unless requested**
- Prioritize existing patterns and architectural decisions
- Use the established component structure and styling patterns
## Code Style & Standards
### TypeScript Configuration
- Strict mode enabled
- ES2017 target
- Path aliases: `@/*``src/*`
- No test files (testing not implemented)
### Formatting & Linting
- ESLint: Next.js core web vitals rules
- Prettier: Use `npm run format:write` before commits
- Import style: Use `@/` prefix for internal imports
### File Organization
- Components: React functional components with TypeScript
- API routes: Next.js App Router (`src/app/api/`)
- Utilities: Grouped by domain (`src/lib/`)
- Naming: camelCase for functions/variables, PascalCase for components
### Error Handling
- Use try/catch blocks for async operations
- Return structured error responses from API routes
## Available Tools and Help
- You can use the context7 tool to get help using the following identifiers for libraries used in this project
- `/langchain-ai/langchainjs` for LangChain
- `/langchain-ai/langgraph` for LangGraph
- `/quantizor/markdown-to-jsx` for Markdown to JSX conversion